PRS Publications

Influence of Willow Biochar Amendment on Soil Nitrogen Availability and Greenhouse Gas Production in Two Fertilized Temperate Prairie Soils

Hangs, R. D.; Ahmed, H. P.; Schoenau, J. J.. 2015. BioEnergy Research


The potential of biochar to improve numerous soil physical, chemical and biological properties is well known. However, previous research has concentrated on old and highly weathered tropical soils with poor fertility, while reports regarding the influence of biochar application on relatively young and fertile temperate prairie soils are limited. Furthermore, the mechanism(s) underlying biochar-induced effects on the plant availability of inorganic nitrogen (N) fertilizers and their relationship to greenhouse gas production is not well understood. The objective of this study was to determine the effect of a biochar soil amendment, produced by slow pyrolysis using shrub willow (Salix spp.) bioenergy feedstock, on CO2, N2O and CH4 fluxes by two contrasting marginal soils from Saskatchewan, Canada with and without added urea, over a 6-week incubation period. Biochar decreased soil N availability after 6 weeks only in the lower organic matter (Brown) soil, with no effect on the Black soil, regardless of fertilizer N addition, which was attributed to soil N immobilization by heterotrophs mineralizing the labile biochar-carbon. There appeared to be a synergistic effect when combining biochar and urea, evidenced by enhanced urease activity and higher initial nitrification rates compared to biochar or fertilization alone. The accelerated urea hydrolysis in the presence of biochar may increase NH3 volatilization losses associated with urea fertilization and, therefore, warrants further investigation. The decreased N2O emissions following biochar addition, with (both soils) or without (Black soil) fertilizer N, could be due to decreased ammonium and nitrate availability, along with changes in denitrification potential as related to improved aeration. Biochar significantly reduced the water-filled pore space, which concurrently increased CH4 consumption in both soils. The lack of biochar effect on CO2 emissions from either soil, with or without fertilizer N, suggests enhanced CO2 consumption by autotrophic nitrifiers. Biochar application appears to be an effective management approach for improving N2O and CH4 fluxes in temperate prairie soils.

Key Words

CH4, CO2 and N2O emissions, Nitrogen supply rate, PRS® probes, Salix, Slow pyrolysis