PRS Publications

Effects of experimentally altered wolf spider densities and warming on soil microarthropods, litter decomposition, litter N, and soil nutrients near Toolik Field Station, AK in summer 2012

Koltz, A. 2018. University of Chicago

Abstract

Predators can disproportionately impact the structure and function of ecosystems relative to their biomass. These effects may be exacerbated under warming in ecosystems like the Arctic, where the number and diversity of predators are low and small shifts in community interactions can alter carbon cycle feedbacks. Here we show that warming alters the effects of wolf spiders, a dominant tundra predator, on belowground litter decomposition and nutrient dynamics. Specifically, while high densities of wolf spiders result in faster litter decomposition under ambient temperatures, they result instead in slower decomposition under warming. Higher spider densities are also associated with elevated levels of available soil nitrogen, potentially benefitting plant production. Changes in decomposition rates under increased wolf spider densities are accompanied by trends toward fewer fungivorous Collembola under ambient temperatures and more Collembola under warming, suggesting that Collembola mediate the indirect effects of wolf spiders on decomposition. The unexpected reversal of wolf spider effects on Collembola and decomposition suggests that in some cases, warming does not simply alter the strength of top-down effects but instead induces a different trophic cascade altogether. Our results indicate that climate change-induced effects on predators can cascade through other trophic levels, alter critical ecosystem functions, and potentially lead to climate feedbacks with important global implications. Moreover, given the expected increase in wolf spider densities with climate change, our findings suggest that the observed cascading effects of this common predator on detrital processes could potentially buffer concurrent changes in decomposition rates.

Key Words

Terrestrial Invertebrates